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Abstract

The pressure variation in a natural circulation loop has been investigated for both steady state and transient oper-

ating conditions. The loop exchanges heat with hot and cold external fluid streams through counterflow concentric tube

heat exchangers. Considering spatial changes only in the direction of the loop length, closed form expressions have been

obtained for pressure difference under steady state condition. An iterative scheme based on finite element method

(FEM) has been formulated to solve the conservation equations in the transient state. The variation of dynamic pres-

sure and its relationship with the variation of temperature field and circulation rate has been described.

� 2004 Published by Elsevier Ltd.
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1. Introduction

Natural circulation loops (NCLs) are used in diverse

engineering applications due to their simple construction

and highly reliable operation. Their application ranges

from the primary heat transfer loop of nuclear reactors

to solar thermal systems. Thermal management of elec-

tronic packages using NCL is becoming promising day

by day. However, the circulation rate and hence the

cooling capacity of a NCL is not known a priori and

is an implicit function of the loop geometry and the

operating variables. Over the decades considerable re-

search efforts have been spent to analyze the steady state
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and dynamic behavior of NCLs. Review of earlier inves-

tigations on NCL can be found in Zvirin [1], Metrol and

Greif [2] and Greif [3]. Further, some interesting studies

have been made on the steady state performance of NCL

having figure of eight configuration [4], scaling criteria

[5] and stability of toroidal loop with a variation of

angle of tilt [6].

In all the above studies heat transfer zones of the

NCL were simulated either considering a constant wall

temperature or imposing a constant wall heat flux. How-

ever, in many applications the fluid circulating in the

NCL exchanges heat with external hot and cold streams

through heat exchangers. Rao et al. [7] and Rao [8] stud-

ied the steady state and transient performance of a rect-

angular NCL with end heat exchangers. Though they

have studied the development of flow and temperature

field, the variation of pressure has not been investigated

either in steady state or under dynamic condition. In an
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Nomenclature

As cross sectional area, m2

c specific heat, kJ/kgK

C heat capacity rate, kW/K

C* non-dimensional heat capacity rate, C
ðlcDÞcf

� �
Cf friction factor, dimensionless

D loop diameter, m

g gravitational acceleration, m/s2

GrL loop Grashof number, dimensionless,
q2
ci
gbD3ðT hi�T ciÞ

l2
cf

� �
L1 horizontal length of the loop, m

L2 vertical length of the loop, m

Ntuc (UA)c/Cmin,c (CEHE), dimensionless

Ntuh (UA)h/Cmin,h (HEHE), dimensionless

Ntu�c ðUAÞ�c=C�
c

Ntu�h ðUAÞ�h=C�
h

P pressure, kN/m2

P �
S non-dimensional static pressure,

� q2
ci
ðA2s ÞcfgL1
l2
cf
D2 sin/S

� �
P �
t non-dimensional total pressure,

P tqciðA2s Þcf
l2
cf
D2

� �
DP*(S,s) non-dimensional pressure difference,

(P*(S,s) � P*(0,s))

Re Reynolds number, quD
l

� �
cf

s space coordinate, m

S non-dimensional space coordinate, s
L1

� �
t time, s

T temperature, K

u velocity, m/s

UA product of over-all heat transfer coefficient

and heat transfer area, kW/K

(UA)* non-dimensional product of over-all heat

transfer coefficient and heat transfer area,
ðUAÞ

ðlcDÞcf

� �

Greek symbols

b thermal expansion coefficient, K�1

e effectiveness, dimensionless, 1�e�Ntu� 1�
C�
cf

C�

� �
1�

C�
cf

C� e
�Ntu� 1�

C�
cf

C�

� �
0
@

1
A

h non-dimensional temperature,
ðT�T ciÞ
ðT hi�T ciÞ

� �
l viscosity, kg/ms

q density, kg/m3

s non-dimensional time, dimensionless,

t lD
qAs

� �
cf

1
L1

h i� �
/ angle of inclination

Subscripts

c cold stream

cf coupling fluid

cfss steady state (coupling fluid)

cfss1 steady state (downcomer)

cfss2 steady state (riser)

ci cold stream inlet

d dynamic

dss steady state dynamic

dssmax maximum steady state dynamic

h hot stream

hi hot stream inlet

s static

t total

max,c larger heat capacity rate of the fluid in

CEHE side, kW/K

max,h larger heat capacity rate of the fluid in

HEHE side, kW/K

min,c smaller heat capacity rate of the fluid in

CEHE side, kW/K

min,h smaller heat capacity rate of the fluid in

HEHE side, kW/K
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NCL, the conversion between static and dynamic pres-

sure and an interaction between buoyancy head and fric-

tional pressure drop is quite interesting. A study of the

variation of pressure in the NCL helps to understand

the development of flow, which is responsible for the

development of the temperature field in an implicit man-

ner. The only study in this direction is due to Mertol

et al. [9], who analyzed the pressure variation in a toroi-

dal loop with the lower half heated under constant heat

flux condition and upper half cooled at a constant wall

temperature.

In the present study, the steady state and transient

pressure variation in a closed rectangular natural circu-

lation loop (NCL) with end heat exchangers have been

investigated. The loop MNOP, of uniform circular cross
section, is placed in a vertical plane as shown in Fig. 1.

Two concentric tube heat exchangers are incorporated

at the lower and upper horizontal sections of the loop.

The fluid inside the NCL passes through the central pas-

sage of the heat exchangers. The hot and the cold

streams passes through the peripheral passages of the

hot end heat exchanger (HEHE) and cold end heat ex-

changer (CEHE), respectively as shown in Fig. 1. There-

fore, the present arrangement also represents a fluid

coupled indirect heat exchanger where the circulation

of the coupling fluid is caused not by any mechanical

prime mover, but solely by the buoyancy force.

In this study, emphasis has been given on the critical

analysis of different competing effects such as buoyancy

force and viscous force; dynamic pressure and static
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Fig. 1. Schematic diagram of a single phase NCL with end heat

exchangers.
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pressure. Therefore, it gives a better insight into the

operation of the loop.
2. Mathematical formulation

The analysis of the rectangular NCL has been made

based on the following assumptions:

• The flow is fully mixed so the velocity and tempera-

ture variation at any cross section is neglected.

• All the fluid streams are in single phase.

• Coupling fluid flows in the counter-clockwise direc-

tion and both the heat exchangers are counter current

heat exchangers.

• The hot and cold stream heat capacity rates remain

constant and finite.

• The over-all heat transfer coefficients and the surface

area per unit length of the heat exchangers are con-

stant throughout their length.

• The density variation in the coupling fluid has been

considered only in the body force term (Boussinesq

approximation).

• Riser and downcomer are adiabatic.

• Viscous dissipation and axial conduction in fluid is

neglected.

• Minor losses due to bends and fittings have been

neglected.

As the velocity depends only on time, the continuity

equation may be written as
ucf ¼ ucfðtÞ: ð1Þ

The momentum equation for a differential fluid ele-

ment inside the loop can be written as

oP t

os
¼ � qcf

oucf
ot

þ qcfg sin/ þ 2Cfqcfu
2
cf

D

� �
: ð2Þ

One can now introduce a functional relationship be-

tween friction factor, Cf, and Reynolds number, Re, in

the following form:

Cf ¼ aRe�b; ð3Þ

where �a� and �b� are constants. Relationship of this form
is valid over a wide range of Reynolds number covering

both laminar and turbulent region. However, the con-

stants have different values for these two regions.

Incorporating the relationship for friction factor in

the differential momentum equation, one gets,

oP t

os
¼ � qcf

oucf
ot

þ qcfg sin/ þ 2alb
cfq

1�b
cf

D1þb u2�b
cf

� �
: ð4Þ

The density variation in the body force term may be

assumed a linear function of temperature [10–12].

qcf ¼ qci½1� bðT cf � T ciÞ�: ð5Þ

In the present work, the reference temperature has

been considered as the cold stream inlet temperature.

Integrating Eq. (4) around the loop one gets the

momentum equation in an integral form.

2ðL1 þ L2Þ
ðAscÞcf

oCcf

ot
þ 4alb

cfðL1 þ L2Þ
qcfðAscÞ2�b

cf D1þb
C2�b
cf

þ qcigb
Z 2ðL1þL2Þ

ð2L1þL2Þ
T cf ds�

Z ðL1þL2Þ

L1

T cf ds

" #
¼ 0: ð6Þ

Further, the variation of temperature in the fluid

streams along the loop can be obtained considering the

heat transfer between the streams by convection.
3. Hot end heat exchanger (HEHE)

For 0 6 s 6 L1 (i.e., s = 0 atM, and s = L1 at N), one

gets the expressions for the temperature change for hot

stream and coupling fluid as,

oT h

ot
� uh

oT h

os
þ ðUAÞh
ðqAscÞhL1

ðT h � T cfÞ ¼ 0 ð7Þ

and

oT cf

ot
þ ucf

oT cf

os
þ ðUAÞh
ðqAscÞcfL1

ðT cf � T hÞ ¼ 0: ð8Þ
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4. Cold end heat exchanger (CEHE)

For (L1 + L2) 6 s 6 (2L1 + L2) (i.e., s = (L1 + L2) at

O, and s = (2L1 + L2) at P), one can express the temper-

ature change in the cold stream and the coupling fluid in

the following form:

oT c

ot
� uc

oT c

os
þ ðUAÞc
ðqAscÞcL1

ðT c � T cfÞ ¼ 0 ð9Þ

while,

oT cf

ot
þ ucf

oT cf

os
þ ðUAÞc
ðqAscÞcfL1

ðT cf � T cÞ ¼ 0 ð10Þ
5. Riser and downcomer

On the other hand, there is no heat transfer in the ri-

ser and the downcomer. Therefore, for

L1 6 s 6 (L1 + L2) (i.e., s = L1 at N, and s = (L1 + L2)

at O), and, (2L1 + L2) 6 s 6 2(L1 + L2) (i.e., s =

(2L1 + L2) at P, and s = 2(L1 + L2) at M),

oT cf

ot
þ ucf

oT cf

os
¼ 0: ð11Þ

The boundary conditions are

T hðs; tÞ ¼ T hi at s ¼ L1 i:e:; at a station ‘N ’; ð12aÞ

T cðs; tÞ ¼ T ci at s ¼ ð2L1 þ L2Þ i:e:; at a station ‘P ’:

ð12bÞ

The initial conditions are

T h;c;cfðs; 0Þ ¼ constantðknown temperatureÞ
i:e:; at s ¼ s and t ¼ 0: ð12cÞ
6. Non-dimensionalisation

Following non-dimensional parameters have been

introduced for transforming the conservation equations

in dimensionless form.

S ¼ s
L1

; K1 ¼
L2
L1

; K2 ¼
L1
D
; ð13aÞ

s ¼ t
lD
qAs

� �
cf

1

L1

� �
; ð13bÞ

hh;c;cf ¼
ðT h;c;cf � T ciÞ
ðT hi � T ciÞ

; ð13cÞ

C�
h;c;cf ¼

Ch;c;cf

ðlcDÞcf
; ð13dÞ
ðUAÞ�h;c ¼
ðUAÞh;c
ðlcDÞcf

; ð13eÞ

Ntu�h;c ¼
ðUAÞ�h;c
C�
h;c

; ð13fÞ

GrL ¼ q2
cigbD

3ðT hi � T ciÞ
l2
cf

; ð13gÞ

where qci is the reference density taken at the cold

stream inlet temperature, i.e., Tci.

Rh;c ¼
ðqAscÞcf
ðqAscÞh;c

ð13hÞ
ratio of coupling fluid heat capacitance to hot/cold

stream heat capacitance per unit length.

Hence, the momentum equation (4) is expressed in

dimensionless form as follows:

oP �
t

oS
¼ � oC�

cf

os
þ q2

ciðA2
s ÞcfgL1 sin/

l2
cfD

2
� p2

16
GrLK2hcf sin/

�

þ pba

22b�1
K2C

�2�b
cf

�
: ð14Þ

The loop momentum equation (6) is non-dimen-

sionalised and is given below.

oC�
cf

os
þ pbaK2

22b�1
ðC�

cfÞ
2�b þ p2

25
GrLK2

1

ð1þ K1ÞZ 2ðK1þ1Þ

ðK1þ2Þ
hcf dS �

Z ðK1þ1Þ

1

hcf dS

" #
¼ 0: ð15Þ

The energy equations given in (7)–(11) are recast in

non-dimensional form as given in (16)–(20).

ohh
os

� C�
hRh

ohh
oS

þ Ntu�hC
�
hRhðhh � hcfÞ ¼ 0; ð16Þ

ohcf
os

þ C�
cf

ohcf
oS

þ Ntu�hC
�
hðhcf � hhÞ ¼ 0; ð17Þ

ohc
os

� C�
cRc

ohc
oS

þ Ntu�cC
�
cRcðhc � hcfÞ ¼ 0; ð18Þ

ohcf
os

þ C�
cf

ohcf
oS

þ Ntu�cC
�
cðhcf � hcÞ ¼ 0; ð19Þ

ohcf
os

þ C�
cf

ohcf
oS

¼ 0: ð20Þ
7. Solution

On integration, Eq. (14) yields the following equation

for the total pressure drop difference.



N.M. Rao et al. / International Journal of Heat and Mass Transfer 48 (2005) 1403–1412 1407
DP �
t ðS; sÞ ¼ P �

t ðS; sÞ � P �
t ð0; sÞ

¼ � oC�
cf

os
S þ P �

S �
p2

16
GrLK2

Z S

0

hcf sin/dS
�

þ pba

22b�1
K2C

�2�b
cf S

�
: ð21Þ

Now following the methodology suggested by Mertol

et al. [9], the dynamic pressure difference can be obtained

by integrating Eq. (14):

DP �
dðS; sÞ ¼ P �

dðS; sÞ � P �
dð0; sÞ

¼ � oC�
cf

os
S � p2

16
GrLK2

Z S

0

hcf sin/dS
�

þ pba

22b�1
K2C

�2�b
cf S

�
; ð22Þ

where

P �
d ¼ P �

t � P �
S ð23Þ

and

P �
S ¼ � q2

ciðA2
s ÞcfgL1

l2
cfD

2
sin/S; P �

t ¼
P tqciðA2

s Þcf
l2
cfD

2
: ð24Þ

The non-dimensional boundary conditions become

hhðS; sÞ ¼ 1:0 at S ¼ 1:0; ð25aÞ

hcðS; sÞ ¼ 0:0 at S ¼ ðK1 þ 2Þ: ð25bÞ

The non-dimensional initial conditions become

hh;c;cfðS; sÞ ¼ 0:0 at S ¼ S and s ¼ 0: ð25cÞ

Distribution of dynamic pressure at steady state may

be obtained by simultaneous solution of the above sys-

tem of equations by setting the transient terms in them

equal to zero.

DP �
dss

¼

� pba
22b�1

K2ðC�
cfÞ

2�bS; 06 S 6 1; ð26aÞ
p2

24
GrLK2hcfss2ðS� 1Þ� pba

22b�1
K2ðC�

cfÞ
2�bS;

16 S 6 ðK1 þ 1Þ; ð26bÞ
p2

24
GrLK1K2hcfss2 � pba

22b�1
K2ðC�

cfÞ
2�bS;

ðK1 þ 1Þ6 S 6 ðK1 þ 2Þ; ð26cÞ
p2

24
GrLK1K2hcfss2 � p2

16
GrLK2hcfss1½S�ðK1 þ 2Þ�

� pba
22b�1

K2ðC�
cfÞ

2�bS;

ðK1 þ 2Þ6 S 6 2ðK1 þ 1Þ: ð26dÞ

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:
Eqs. (26a)–(26d) are the explicit functions. Therefore,

it is obvious from these equations that the location of ex-

trema are obtained at S = 1 and at S = (K1 + 1) and the

same has been obtained from numerical solution, which

has been described in the next section.
Steady state total pressure variation along the loop is

similar to Eqs. (26a)–(26d) with the inclusion of static

pressure, P �
S, (function of space coordinate S and angle

of inclination of loop sections) in each of the equations

of (26a)–(26d). However, angle of inclination, /, is zero
for both top and bottom horizontal sections, therefore,

the term P �
S is zero for these sections. The steady state

and transient variation of total pressure has also been

studied and presented in the later sections. The numeri-

cal value,
q2
ci
ðA2s ÞcfgL1
l2
cf
D2

� �
, in the static pressure term, P �

S, has

been taken as 2.0 · 108 for presenting the total pressure

analysis.

Further, limiting analytical expressions have been de-

rived for the steady state values of dynamic pressure,

considering the following two cases.

Case I. When C�
h and C�

c tend to infinity, effectiveness

of both hot and cold heat exchangers become 1.0. Fur-

ther, hcfss2 = 1.0, hcfss1 = 0.0 and C�
cf ¼ NGrL

K1

ð1þK1Þ

h i 1
2�b

[8]. Where N ¼ p2�b

26�2ba
.

Therefore, it provides

DP �
dss ¼

� p2

25
K1K2

ð1þK1Þ
GrLS; 0 6 S 6 1; ð27aÞ

p2

24
K2GrL S 1� K1

2ð1þK1Þ

� �
� 1

h i
;

1 6 S 6 ðK1 þ 1Þ; ð27bÞ

� p2

25
K1K2

ð1þK1ÞGrLS;

ðK1 þ 1Þ 6 S 6 ðK1 þ 2Þ; ð27cÞ

p2

24
K1K2GrL 1� S

2ð1þK1Þ

� �
;

ðK1 þ 2Þ 6 S 6 2ðK1 þ 1Þ: ð27dÞ

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

Case II. When C�
h ¼ C�

c ¼ C�;C� P C�
cf and

Ntu�h ¼ Ntu�c ¼ Ntu�, then e�h ¼ e�c ¼ e. Where e is the

effectiveness, 1�e�Ntu� 1�
C�
cf

C�

� �
1�

C�
cf

C� e
�Ntu� 1�

C�
cf

C�

� �.
Therefore, the steady state non-dimensional riser,

downcomer temperatures and coupling fluid flow rate

become

hcfss2 ¼
1

2� e
; ð28Þ

hcfss1 ¼ 1� 1

2� e

� �
; ð29Þ

C�
cf ¼ NGrL

K1

ð1þ K1Þ
e

ð2� eÞ

� � 1
ð2�bÞ

: ð30Þ
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And the dynamic pressure distribution under steady

state can be obtained as

DP �
dss ¼

� p2

25
K1K2

ð1þK1Þ
GrL e

ð2�eÞ S; 0 6 S 6 1; ð31aÞ
p2

24
K2GrL 1

ð2�eÞ ðS � 1Þ

� p2

25
K1K2

ð1þK1ÞGrL
e

ð2�eÞ S;

1 6 S 6 ðK1 þ 1Þ; ð31bÞ
p2

24
K1K2GrL 1

ð2�eÞ

� p2

25
K1K2

ð1þK1ÞGrL
e

ð2�eÞ S;

ðK1 þ 1Þ 6 S 6 ðK1 þ 2Þ; ð31cÞ
p2

24
K2GrL

K1

ð2�eÞ � 1� 1
ð2�eÞ

� �
S

� �
� p2

25
K1K2

ð1þK1Þ
GrL e

ð2�eÞ S;

ðK1 þ 2Þ 6 S 6 2ðK1 þ 1Þ: ð31dÞ

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:
0 1 2 3 4 5 6
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Fig. 2. Steady state loop temperature distribution.
8. Results and discussion

The developments of circulation rate, temperature

field and local pressure in a NCL are closely related

and cannot be studied in isolation. In the present sec-

tion, the pressure variation under both steady and tran-

sient state has been described in connection with the

change in circulation rate and local temperature.

It may be noted that the conservation equations for

the transient state cannot be solved analytically. Eqs.

(15)–(20) have been solved using a Finite Element for-

mulation. The simulation starts from a cold state. The

coupling fluid and the two external fluid streams are at

isothermal condition, at a temperature equal to that of

the cold stream at the entry to the CEHE. Then a step

input is given to the hot fluid inlet temperature. The sim-

ulation is continued till a new steady state is achieved.

The circulation rate reaches its new steady state value

from a low initial value. For most of the combinations

of operating parameters, the flow goes to the turbulent

regime from the laminar one. The program discriminates

between the two regimes taking a value of critical Rey-

nolds number as 2000. In the friction factor correlation,

values of �a� are taken as 16 and 0.079 for laminar and

turbulent flows, respectively and values for �b� are taken
1.0 and 0.25 for the corresponding cases. No transition

zone has been considered in the present work.

Inception of fluid flow in the loop is associated with

the instabilities present in the system [13]. Modelling

of such instabilities are beyond the scope of the present

analysis. Therefore, to initialize the simulation a small

unidirectional flow in the counter-clockwise direction

has been imposed. The Finite Element program uses

an iterative scheme. The flow rate of the coupling fluid

is assumed (a small unidirectional flow) and it is cor-

rected till the loop momentum equation is satisfied. To

start with, the loop temperature field is determined by
solving Eqs. (16)–(20), with an initially assumed cou-

pling fluid flow rate, using two boundary conditions as

mentioned in Eqs. (25a) and (25b). With this tempera-

ture field the flow rate is obtained by solving Eq. (15).

As the energy and loop momentum equations are cou-

pled in nature, at the beginning of the first time step a

small non-dimensional temperature (arbitrarily small

positive value) has been assigned for the coupling fluid

at the downcomer end (beginning of HEHE, M). This

demands use of two error criteria, one for the coupling

fluid velocity and the second for the temperature. Eqs.

(21) and (22) are evaluated for total and dynamic pres-

sures, respectively once the two prescribed error criteria

are satisfied. The integrals in Eqs. (15), (21) and (22)

have been evaluated by Gauss–Legendre quadrature.

Further details of the solution procedure may be ob-

tained from Rao [8].

In Figs. 2 and 4 the variation of temperature and dy-

namic pressure over the entire loop have been given

under the steady state for different values of the heat

capacity rates of the external fluid streams and for the

following geometrical and physical parameters;

Ntu�h ¼ 5:0, Ntu�c ¼ 2:0, GrL = 1.0 · 107, Rh = 5.0 · 103,
Rc = 1.0 · 103, K1 = 2.0 and K2 = 20.0. The correspond-

ing change of the circulation rate is depicted in Fig. 3.

As the heat capacity rate of the external fluid streams

increases there is an increase in the riser temperature and

decrease in the downcomer temperature (Fig. 2) due to

the improvement in heat exchange between the coupling

fluid and the external fluid streams. This in turn in-

creases the flow rate (C�
cf ) as can be seen from Fig. 3.

Further, it can be seen from Fig. 4 that as the flow rate

increases with the increase of C�
h and C�

c , pressure drop

increases in the HEHE section due to viscous losses. Dy-

namic pressure difference increases along the riser and

reaches its maximum value in the loop at the end of

the riser section. This is due to the rise in total pressure

from the contribution of buoyancy. There onwards the
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dynamic pressure difference decreases in the remaining

part of the loop (CEHE and downcomer).

From Eqs. (25a) and (25b) one gets the maximum

limit for riser temperature as 1.0 and the minimum value

of the downcomer temperature as 0.0. This is possible

when both C�
h and C�

c tend to infinity as mentioned in

the special case I. Numerically, hcfss2 and hcfss1 ap-

proaches their upper and lower limits respectively, for

high values of C�
h and C�

c i.e., C�
h ¼ C�

c ¼ 6	 104 (Fig.

2). In this case there is a maximum loop temperature dif-

ference (1.0–0.0 = 1.0), which in turn gives the maximum

density difference makes the fluid to flow at the highest

possible rate. As a result, pressure drop is maximum in

HEHE and the pressure rise is lower along the riser

(Fig. 3) as there is a substantial increase in frictional

pressure drop due to the increase in circulation rate.

This further results into decrease of pressure in both

CEHE and downcomer and makes the value of dynamic
pressure always lower than those obtained at other val-

ues of C�
h and C�

c .

The curves for dynamic pressure difference at various

values of heat capacity rates share a few common fea-

tures. The slopes of the pressure difference curve for

HEHE and CEHE are identical in magnitude and sign.

The slope of the curve in the riser section is more than

that of the curve in the downcomer section. This is obvi-

ous as the positive pressure head generated in the riser

balances the frictional pressure drop in the entire loop.

Interestingly, it can be noted that there is no change of

slope between CEHE and downcomer for the limiting

condition of infinite heat capacity rate of the external

fluids (C�
h ¼ C�

c > 6	 104). As the flow rate is maximum

at this condition the frictional pressure drop is much

higher than the gravitational pressure head. Therefore,

though the CEHE and the downcomer are at different

orientations with respect to gravity, the difference of

slope of the pressure difference curve for these two sec-

tions is negligible. For the presentation of results, curves

are plotted taking identical values of the heat capacity

rate for both the heat exchangers. The nature of the

curves does not change if different heat capacity rates

are considered for the heat exchangers.

One can see that, for the estimation of dynamic pres-

sure, the static pressure, P �
S, has been subtracted from

the total pressure, P �
t (Eq. (23)). The pressure, P �

S, is

the hydrostatic pressure only when the temperature in

the loop is everywhere equal to the inlet temperature

(non-dimensional) of the cold stream i.e., at initial con-

dition (zeroth time). Therefore, the pressure P �
d is a rea-

sonable approximation to the dynamic pressure [9].

From Eq. (22) one can see that under steady state con-

ditions (
oC�

cf

os ¼ 0 ) the change in dynamic pressure is bal-

anced by buoyancy and friction. The datum for the

pressure has been taken to be the value at S = 0 (Eq.

(22)). Friction always opposes the flow, contribution

to a negative pressure gradient, while buoyancy acts to

assist the flow at some locations and oppose the flow

in others. Hence, the pressure gradient is positive when

buoyancy assists the flow strongly enough to overcome

the friction.

Fig. 5a and b show the total pressure variation at the

steady state for two different numerical values of P �
S,

q2
ci
ðA2s ÞcfgL1
l2
cf
D2

� �
. As it has been demonstrated in later sec-

tions that for a reasonable physical and geometrical val-

ues, static pressure nullifies the significance of presence

of dynamic pressure at any cross section of the loop.

This has been illustrated in Fig. 5b for taking a numer-

ical value of P �
S ¼ 2	 1010 at which variation of hot and

cold stream heat capacity rates is having no effect on to-

tal spatial pressure variation. The numerical value

P �
S ¼ 2	 1010 is obtained for the values of qci, lcf, L1

and D as 998.0kg/m3, 959.0 · 10�6kg/ms, 1.0m and

0.0508m, respectively. On the other hand, the numerical
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value of P �
S ¼ 2	 108 (which has been taken arbitrarily

to show the effect of dynamic and static pressure varia-

tion together) shows the spatial variation of total pres-

sure with the variation of hot and cold stream heat

capacity rates (Fig. 5a). The geometrical and physical

parameters have been used for total pressure variation

are similar to that of dynamic pressure variation. It is

well known that the static pressure decreases in upward

movement (riser) and increases in downward movement

(downcomer) and variation of static pressure in bottom

and horizontal zones is zero. The Fig. 5a shows the sim-

ilar trend in which, the pressure variation is of only dy-

namic pressure along the heating and cooling zones and

is combination of static and dynamic pressures along the

riser and downcomer.

The transient variation of the temperature field and

the circulation rate are depicted in Figs. 6 and 7 for a

typical case. Here, the geometrical and physical param-

eters are identical to those, which are taken for the pre-

vious analysis. However, the C�
h and C�

c are 1.0 · 10
4 and
1.0 · 104, respectively. Some of the loop parameters

(Ntu�h and Ntu�c ) and geometrical parameters (K1 and

K2) have been selected arbitrarily without keeping any

specific application in mind. However, the results ob-

tained thereby helps to understand the general behav-

iour of the NCL. A numerical value of 2 · 108 for P �
S

has been taken in evaluating the total pressure. The cor-

responding dynamic and total pressure variations are

given in Figs. 8 and 9.

It can be seen from Fig. 7 that the system reaches the

steady state through some oscillations for a finite step

perturbation of the hot fluid inlet temperature. While

the continuous variation of the circulation rate from

the inception of the perturbation up to the steady state

has been depicted, the pressure and temperature varia-

tions over the loop have been presented for different

time steps. The time step values have been selected care-

fully to demonstrate the phenomenological develop-

ments during the transient period.
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Just after the imposition of the finite perturbation

(s = 0.00036) the flow is negligibly small (Fig. 7). Fur-

ther, at this stage there is a rise in temperature of the

coupling fluid only in the HEHE. At the remaining sec-

tions of the loop except very close to the entry of the

riser the coupling fluid temperature remains at its initial

low value (Fig. 6). For the corresponding condition in

Fig. 8, there is a small pressure drop in HEHE, a rela-

tively larger pressure rise in a very small section of the

riser close to its entry, and then a continuous fall in pres-

sure in CEHE and in the downcomer. With the passage

of time, the heating effect of the HEHE penetrates to a

larger distance into the riser as can be seen from the tem-

perature traces in Fig. 6. As this gives rise to a higher

driving force due to gravity, the flow rate also increases.

This situation is depicted in Fig. 8 for s = 0.001. From

the uprising portion of the pressure difference curve

one can approximately determine the progress of the

heated fluid front in the riser at this time. At

s = 0.0016 a unique situation may be observed. At this
juncture of time, due to initial oscillations, the flow rate

of the coupling fluid is maximum – even more than its

steady state value. This gives maximum value of pres-

sure difference across any section of the loop. Finally,

the pressure difference have been depicted for s = 0.003

where the new steady state has already been reached.

The pressure difference curve also matches exactly

with the analytical results obtained for the steady state.

All the pressure difference curves depicted in Figs. 4 and

8 starts from a zero value at S = 0 (the selected datum

level for the pressure calculation) and terminates with

the same value at S = 6. This indicates a balance be-

tween the buoyancy force and the viscous dissipation

irrespective of the operating parameters and steady or

transient state.

At the beginning of imposition of finite perturbation

(0.00036) the flow is negligibly small, therefore, the static

pressure variation completely dominates the dynamic

pressure variation as illustrated in Fig. 9. With the

increase of flow rate the dominance of static pressure

gradually diminishes and the pressure variation becomes

the combination of both dynamic and static till the sys-

tem reaches the steady state (Fig. 9). The numerical

value of P �
S has been taken as 2 · 108 along with the

identical operating and geometrical parameters as it

has been considered in the temporal variation of

dynamic pressure.

Though the variation of dynamic pressure is of inter-

est, the ratio of the maximum dynamic pressure to max-

imum hydrostatic pressure is of great significance.

Therefore, the ratio of maximum dynamic pressure var-

iation at the exit of the riser to maximum hydrostatic

pressure has been considered for this study. This ratio

can be written as follows:

ðDP �
dssmaxÞ

ðDP �
SÞ

¼
p2

16
GrLhcfss2K1

q2
ci
ðA2s ÞcfgL1
l2
cf
D2

�
pba
22b�1

K2ðK1 þ 1ÞðC�
cfssÞ

2�b

q2
ci
ðA2s ÞcfgL1
l2
cf
D2

:

ð32Þ

The above equation can further be simplified as

ðDP �
dssmaxÞ

ðDP �
SÞ

¼ ½bðT cfss2 � T ciÞ� �
25�2ba
p2�b

lcf

q2
ci

ð1þ K1Þ
D4ccf

Ccfss

� �
:

ð33Þ

The simplified dimensional loop momentum equa-

tion can be written as follows.

C2�b
cfss ¼ p2�b

26�2b
q2
cigbD

5�bc2�b
cf

lb
cf

K1

ð1þ K1Þ
ðT cfss2 � T cfss1Þ

ð34Þ

and the steady state riser and downcomer temperatures

(dimensional) may be written as

T cfss2 ¼ T cfss1 �
Cmin;h

Ccfss

ehðT hi � T cfss1Þ
� �

; ð35Þ
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T cfss1 ¼ T cfss2 �
Cmin;c

Ccfss

ecðT ci � T cfss2Þ
� �

; ð36Þ

where

eh;c ¼
1� e

�Ntuh;c 1�
Cmin;h;c
Cmax;h;c

� �

1� Cmin;h;c

Cmax;h;c
e
�Ntuh;c 1�

Cmin;h;c
Cmax;h;c

� � : ð37Þ

To determine the Ccfss, Tcfss2 and Tcfss1, the coupled

Eqs. (34)–(36) have been solved iteratively. The detailed

computational procedure has been given in Rao [8].

Here, the coupling fluid has been assumed as water.

The physical properties, at 22 �C, qcf, lcf, ccf and b have

been taken as 998.0kg/m3, 959.0 · 10�6kg/ms, 4.181kJ/

kgK and 227.5 · 10�6 K�1, respectively [14]. The hot

and cold stream heat capacity rates have been varied

from 0.05 to 50kW/K. The hot stream inlet temperature

has been varied from 100 to 200 �C and cold stream tem-

perature has been kept constant, 20 �C. Ntuh and Ntuc
values have also been varied from 2 to 5. The geometri-

cal dimensions such as diameters, 0.0508 and 0.1016m

for the heat exchanger, and height to horizontal length

ratio of 2–4 for the loop have been considered. With

the various combinations of above values the minimum

and maximum values of
ðDP�

dssmax
Þ

ðDP �
S
Þ have been determined

and found as 0.04 and 0.2, respectively. Thus, the static

pressure is 25–5 times greater than the dynamic pressure.

Therefore, the total pressure is essentially the hydro-

static pressure. This is in well conformity with the study

of Mertol et al. [9] who have observed in their analysis

that the static pressure is up to four orders of magnitude

greater than the dynamic pressure.
9. Conclusion

The present study deals with the variation of dynamic

and total pressure in a rectangular NCL of uniform cir-

cular cross section with end heat exchangers. The gener-

alised momentum and energy equations have been

derived for the transient operating condition in a one

dimensional frame. A Finite Element Technique has

been used to solve the set of seven coupled deferential

and integral equations in an iterative manner. Temporal

dynamic pressure distribution has been presented along

with the temporal variation in temperature distribution

and development of flow rate. Additionally, pressure

distribution equations for the steady state have been de-

rived analytically. Two special cases have been consid-

ered and limiting analytical expressions for them have
been deduced. Further, spatial steady state total pres-

sure variation as well as temporal total pressure varia-

tions have also been presented. The ratio of maximum

dynamic pressure to maximum static pressure has been

computed taking realistic values for operating parame-

ters, physical properties and geometrical dimensions. It

has been found that the total pressure is essentially a sta-

tic pressure.
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